
	



	

"Tom,	our	sales	guy	just	visited	with	one	of	our	dream	
prospects	this	week.	If	we	had	feature	X	(not	currently	on	the	roadmap	or	backlog)	we	could	land	them."	

"So	-	you	want	us	to	change	everyone's	priorities	in	case	we	can	sway	this	dream	client	to	consider	us?"	

There	are	so	many	variations	on	this	theme.	
• Maybe	it’s	sales.	
• Maybe	it's	senior	management	changing	their	plan.	
• Maybe	it's	a	public	security	breach	that	motivates	a	change,	or	
• Maybe	it's	just	that	the	unprioritized	backlog	is	so	big	that	developers	can	almost	randomly	pick	anything	

they	want	and	claim	that	they	are	making	progress.	

The	fact	is	that	without	a	clear	list	of	the	things	that	are	needed,	you'll	be	wandering	in	the	desert,	and	you	
won't	be	shipping	"100%	of	something."	

This	"too	many	priorities"	problem	is	often	like	the	parable	about	the	blind	men	describing	different	parts	of	
the	elephant,	each	believing	they	had	a	complete	picture,	but	really	only	able	to	describe	the	part	closest	to	
them.	
• Sales	sees	the	gaps	between	what	customers	say	they	want	and	what	the	product	does.	
•Operations	feels	the	pain	of	the	app	downtime	and	upgrades	not	working	smoothly.	
• Senior	management	wants	to	see	the	roadmap	and	BELIEVE	it.	

And	you	want	to	see	your	developers	delivering	business	value	and	having	all	of	you	get	credit	for	the	hard	
work	you're	doing.	

Next	step:	

Take	an	honest	assessment	of	what	your	team	is	actually	working	on	now.	
Look	seriously	at	the	backlog,	particularly	the	stories	that	have	the	most	"noise"	around	them	and	estimate	
what	it	would	take	to	deliver	them.	

Then	have	a	conversation	with	key	stakeholders	from	different	areas	about	what	trade	offs	can	be	made.		

"If	we	deliver	this	for	sales,	it	means	that	operations	can't	have	that	feature	that	lowers	overtime	for	another	
quarter.	Do	we	agree	that	it's	ok	to	do	that?”	

When	new	"urgent"	needs	come	up,	take	a	look	at	what	*won't*	get	done	so	that	stakeholders	understand	
more	of	the	consequences	of	insisting	their	current	hot	item	gets	done.	

1 Unclear	Priorities



	

Often,	there	is	so	much	pressure	to	"make	progress"	that	
leaders	drive	their	teams	to	begin	working	even	before	
there	is	a	clear	plan	for	delivering	business	value.	We	call	
that	"definition	of	ready"	-	when	user	stories,	
requirements	or	even	features	are	clearly	enough	defined	
that	they	are	ready	for	a	skilled	developer	to	make	
measurable	progress.	

When	this	is	happening	frequently,	it	may	show	up	as:	
• 	developers	having	trouble	estimating	work,		
• and	either	a	lot	of	rework	because	what	was	built	is	not	what	the	customer	wanted,	severely	delayed	
features,	or	developers	just	creating	artificially	high	estimates	based	on	uncertainty.	

Next	step:	

Sit	down	with	your	developers	and	review	some	stories	in	the	backlog.		

Ask	them	to	rank	specific	stories	based	on	how	confident	they	are	in	knowing	exactly	what	is	needed	-	
start	with	high	or	low,	and	then	look	at	recently	shipped	stories	and	compare	what	was	built	with	
what	was	documented	in	the	original	story.		

You	may	gain	some	powerful	insights	about	how	"ready"	your	backlog	actually	is.	

2Vague	
Requirements



	

"Tom,	it's	been	a	while	and	I'm	going	to	need	you	to	send	that	information	to	me.”	

"I	sent	it	several	days	ago!"	

*checks	app*	
"Message	Send	Failure"	

We've	never	had	as	many	communication	channels	as	we	do	
today,	and	yet,	how	many	times	have	you	experienced	a	
message	not	getting	through?	

This	can	leave	us	confused	and	disconnected	-	the	exact	
opposite	of	the	promise	of	the	"information	at	your	fingertips"	that	Bill	Gates	famously	promised	so	many	years	
ago.	

There	are	many	causes	of	low	communication,	and	tech	tools	are	just	one	of	them.	

Next	step:	

Take	some	time	and	identify	which	tools	your	team	should	use	(email,	text,	instant	message	like	Slack	
or	teams	-	including	whether	DM	or	channel)	
•When	should	each	tool	be	used?	(e.g.	email	for	"normal"	and	IM	for	"urgent"?)	
• For	each	tool,	what	is	the	expected	response	time?	Within	a	day?	A	few	hours?	A	week?	
•When	do	you	expect	team	members	to	be	accessing	the	tool?	(e.g.	Off	hours,	do	team	members	
need	to	check	and	respond	to	messages?)	

Write	down	your	list	and	then	set	aside	some	time	to	discuss	expectations	with	your	team!	

3 Communications



	

Google	has	done	extensive	research	on	high	performing	teams	in	their	Project	Oxygen	and	Project	Aristotle.		

One	of	their	key	findings	is	that	teams	who	significantly	outperform	"regular"	teams	have	one	characteristic	
that	sets	them	apart	more	than	any	other.		

Experts	call	that	"Psychological	Safety"	-	it	basically	means	that	team	members	feel	safe	to	be	themselves	and	
to	take	appropriate	risks.	

How	would	your	team	respond	to	these	statements?	
How	strongly	do	you	agree	or	disagree?	

1. If	you	make	a	mistake	on	this	team,	it	is	often	held	against	you.	
2. Members	on	this	team	are	able	to	bring	up	problems	and	tough	issues	
3. People	on	this	team	sometimes	reject	others	for	being	different.	
4. It	is	safe	to	take	a	risk	on	this	team	

Next	step:	

Your	goal	is	NOT	to	get	the	"right"	response	-		
Your	goal	is	to	to	increase	your	team's	shared	belief	that	the	team	is	safe	for	interpersonal	risk	taking	

Three	research-based	things	you	can	do	are:	
1. Frame	the	work	as	a	learning	problem,	not	an	execution	problem	
2. Acknowledge	your	own	imperfection	and	fallibility	
3. Model	curiosity	and	ask	a	lot	of	questions	that	allow	your	team	members	to	share	their	point	

of	view.	

4Trust	Issues



	
"Tom,	I	know	I'm	late	with	this	feature,	but	I've	been	having	issues	getting	this	to	work	in	MS	Distributed	
Transaction	Coordinator”	

"I	know	I'm	not	the	architect	here,	and	you're	definitely	more	skilled	than	I	am,	but	our	system	is	not	
distributed	or	transactional.	Why	are	you	using	that	tool?"	

*Dev	engages	in	the	“cloud	of	confusion”*		
(Hoping	I'll	be	overwhelmed	with	a	barrage	of	buzzwords	and	forget	my	question.)	

After	several	back-and-forth	exchanges	
"Well,	I	picked	that	tool	because	I	thought	it	would	be	cool.”	

This	is	an	old	story,	but	i've	worked	with	leaders	like	you	who	see	it	over	and	over	again.	Developers	get	a	little	
bored	with	the	everyday	stuff.	Maybe	they	are	afraid	they	will	be	left	behind,	or	maybe	they	feel	like	access	to	
that	new	feature	will	be	super	helpful.	

A	lot	of	times	this	works	out	fine,	but	sometimes	it's	a	long	path	to	an	expensive	thing	to	maintain.	Like	the	
team	I	worked	with	recently	who	had	built	their	whole	system	in	Java,	but	then	had	a	developer	code	a	bunch	
of	components	in	.NET	because	he	was	available	and	it	was	what	HE	wanted	to	use.	

He	was	optimizing	for	his	preference,	but	what	happens	when	that	dev	leaves	the	team	(as	happened	a	few	
months	later?)	Who	will	support	that	part	of	the	code?	

Next	step:	

Write	down	and	share	the	key	things	the	company	is	optimizing	for	-	including	shared	knowledge,	
vendor/community	support	for	the	language,	support	lifecycle,	alignment	with	company	standards,	
total	cost	of	ownership	(including	licensing	plus	maintaining	knowledge	about	it,)	scalability,	and	other	
factors.	

As	decisions	are	being	made	for	building	a	new	component,	review	the	proposed	solution	compared	
with	your	prioritized	list,	and	if	the	one	that	your	developer	loves,	doesn't	match	up,	help	them	
compare	their	criteria	with	the	company's	criteria.	

5 Developers	
Picking	Your	

Tech



What	will	happen	next?	

Maybe	you	see	your	team	in	this	situation,	what	happens	if	you	keep	going	the	way	you	are	going?	

Your	team	is	working	hard,	but	not	getting	credit,	and	you	know	that	you	all	are	not	delivering	as	
much	value	as	you	know	you	could	deliver.	

Without	some	kind	of	change,	things	are	not	going	to	get	better.		

You're	still	going	to	have	that	empty	feeling	in	the	pit	of	your	stomach	when	you	see	the	caller	ID,	the	
email	from	your	boss	or	other	company	leaders,	and	no	matter	how	hard	you	push	yourself	and	your	
team,	it's	likely	to	be	frustrating.		

But	it	doesn't	have	to	be	this	way.		

Imagine	a	time	when		
• Your	leaders	agree	on	an	achievable	roadmap.		
•Where	realistic	tradeoffs	are	made	and		
• Your	backlog	is	focused	on	the	highest	value	items	first.		

Imagine	being	in	the	room	full	of	stakeholders	who	all	are	saying		
"We	know	it's	been	tough	and	we	appreciate	that	you	and	your	team	delivered	as	much	as	they	
have	this	year!”	

I'd	love	to	help	you	on	your	journey.		

Set	up	a	call	with	me	today.	Whether	we	are	talking	about	a	program	assessment,	a	workshop	to	get	
all	team	members	on	the	same	page,	team	building,	team	support	or	individual	coaching,	together	we	
can	help	you	be	the	hero	your	company	needs	in	a	software	leader.		

Next	Step:	

Set	up	your	call	now!		
https://calendly.com/brighthillgroup/quick-call-with-tom	

	

?Now	what?

https://calendly.com/brighthillgroup/quick-call-with-tom
https://calendly.com/brighthillgroup/quick-call-with-tom

